Section 4.5

Example of Integration by Substitution: When evaluating

$$
\int\left(x^{2}+1\right)^{4}(2 x) d x
$$

notice that if you let $u=x^{2}+1$, then the derivative is $d u=2 x d x$. With these substitutions, the integral becomes

$$
\int u^{4} d u
$$

which is easily evaluated using the power rule: $\int u^{4} d u=\frac{1}{5} u^{5}+C=\frac{1}{5}\left(x^{2}+1\right)^{5}+C$. You can check that this is the correct antiderivative by differentiating it.

1) Find the following, and then check that your answer is correct by differentiating it.
a) $\int\left(x^{2}-3\right)^{3}(2 x) d x$
b) $\int 3 \cos 3 x d x$

Another Example of Integration by Substitution: Consider $\int x\left(x^{2}+1\right)^{2} d x$: You are trying to find a way to replace $x d x$ with $d u$, so if you let $u=x^{2}+1$, then $d u=2 x d x$. If you divide both sides by 2 , you get $\frac{1}{2} d u=x d x$, so the integral becomes $\int u^{2}\left(\frac{1}{2} d u\right)$. You can move the constant to the front, so the integral is

$$
\frac{1}{2} \int u^{2} d u
$$

which is easily evaluated using the power rule.
2) Find the following, and then check that your answer is correct by differentiating it.
a) $\int x^{2}\left(x^{3}+4\right) d x$
b) $\int(x-1)\left(x^{2}-2 x\right) d x$
3) Find the following, and then check that your answer is correct by differentiating it.
a) $\int \sqrt{4 x+3} d x$
b) $\int x \sqrt{5 x-3} d x$
c) $\int \tan ^{2} 2 x \sec ^{2} 2 x d x$
4) Find the following definite integrals.
a) $\int_{1}^{2} x\left(x^{2}-3\right)^{2} d x$
b) $\int_{2}^{7} \frac{x}{\sqrt{x+2}} d x$
5) Evaluate

$$
\int_{-1}^{1} \frac{x^{3}-x}{x^{2}-4} d x
$$

Section 4.6

If f is continuous on $[a, b]$, then
a) The Trapezoidal Rule for approximating $\int_{a}^{b} f(x) d x$ is given by

$$
\int_{a}^{b} f(x) d x \approx \frac{(b-a)}{2 n}\left[f\left(x_{0}\right)+2 f\left(x_{1}\right)+2 f\left(x_{2}\right)+\cdots+2 f\left(x_{n-1}\right)+f\left(x_{n}\right)\right] .
$$

b) The Midpoint Rule for approximating $\int_{a}^{b} f(x) d x$ is given by

$$
\int_{a}^{b} f(x) d x \approx \frac{(b-a)}{n}\left[f\left(x_{1}^{*}\right)+f\left(x_{2}^{*}\right)+\cdots+f\left(x_{n-1}^{*}\right)+f\left(x_{n}^{*}\right)\right],
$$

where $x_{i}^{*}=\frac{x_{i}+x_{i-1}}{2}$.
c) Simpson's Rule for approximating $\int_{a}^{b} f(x) d x$ is given by

$$
\int_{a}^{b} f(x) d x \approx \frac{b-a}{3 n}\left[f\left(x_{0}\right)+4 f\left(x_{1}\right)+2 f\left(x_{2}\right)+4 f\left(x_{3}\right)+\cdots+4 f\left(x_{n-1}\right)+f\left(x_{n}\right)\right]
$$

where n is an even number.

1) Approximate

$$
\int_{0}^{2} x^{2} d x
$$

with $n=4$, using
a) The Trapezoidal Rule
b) The Midpoint Rule
c) Simpson's Rule

Compare your answers from the three approximations to the exact value of the definite integral.

